About IBM DB2
Finding a good Db2 connector is tough! Use ours for both extracting data from and loading data to.
About ChartMogul
ChartMogul can turn new and existing business intelligence data into valuable analytics that companies can use to improve their market performance. ChartMogul can take subscriber data - both created within ChartMogul and imported from other data sources - and generate visualized analytics for a variety of metrics that SaaS companies care about.
Popular Use Cases
Bring all your ChartMogul data to Amazon Redshift
Load your ChartMogul data to Google BigQuery
ETL all your ChartMogul data to Snowflake
Move your ChartMogul data to MySQL
IBM DB2's End Points
IBM Db2 Database
Db2 Database is a relational database management system (RDBMS) optimized for high-performance transactional workloads. As an operational database management system, Db2 Database is not only highly performant and reliable, but it also allows you to derive actionable insights from your operational data. Db2 Database delivers advanced features like in-memory technology, storage optimization, continuous data availability, workload management, and cutting-edge management and development tools. Db2 Database is compatible with Windows, Linux, and Unix.
IBM Db2 on Cloud (IBM Db2 Hosted)
Db2 on Cloud is a fully-managed, SQL-based transactional database that runs on the cloud. One of the defining characteristics of Db2 on Cloud is its high-availability option, which delivers 99.99% uptime (according to IBM). This cloud-based database offers automatic security updates and independently scalable storage and processing, which automatically scales resources up and down based on usage requirements. Available on AWS and IBM Cloud, Db2 on Cloud delivers advanced features for backup and recovery, encryption, and data federation. Through its private networking features, you can also deploy Db2 on Cloud on a private network accessible over a secure VPN. Db2 Hosted is the hosted, unmanaged version of the Db2 on Cloud SQL-based cloud database.
IBM Db2 Warehouse
As a data management system optimized for high-speed read operations, data aggregation, and analysis, IBM Db2 Warehouse has evolved over time to offer a range of advanced analytics and data management features. Db2 Warehouse allows you to combine data from various transactional and operational database systems, and analyze it to find deep insights, patterns, and hidden relationships. Db2 Warehouse supports a range of data types, machine learning algorithms, analytical models. For example, Db2 Warehouse supports relational data, non-relational data, geospatial data, multi-parallel processing, predictive modeling algorithms, in-memory analytical processing, Apache Spark, RStudio, XML data, embedded Spark Analytics engine, and more. Db2 Warehouse runs on-premises, on the private cloud, and on various public clouds as a managed or unmanaged solution.
IBM Db2 Warehouse on Cloud (dashbDB for Analytics)
Db2 Warehouse on Cloud (formerly known as “dashDB for Analytics”) is a fully-managed, highly-scalable, cloud-based data warehouse management system. IBM optimized Db2 Warehouse on Cloud to perform compute-heavy data analytics and machine learning processes at scale. The product offers autonomous cloud services with Db2's autonomous self-tuning processing engine, in addition to its fully-automated database monitoring, uptime monitoring, and operations monitoring. Db2 Warehouse on Cloud also includes capabilities for column-based storage, querying compressed datasets, data skipping, and in-memory processing. Finally, Db2 Warehouse on Cloud delivers in-database geospatial data and machine learning features – including algorithms for ANOVA, Association Rule, k-means, Naïve Bayes, Regression analysis, in-database spatial analytics, support for Esri data types, and it natively includes Python drivers and a Db2 Python integration for Jupyter Notebooks. To access these and other features, you can deploy Db2 Warehouse on Cloud via AWS or IBM Cloud.
IBM Db2 BigSQL (IBM SQL)
Db2 BigSQL (formerly known as “IBM SQL”) is a high-performance SQL data engine on Hadoop featuring a Massively Parallel Processing (MPP) architecture. Also known as “Big SQL,” this highly-scalable data engine offers ease and security while querying data from multiple sources across your enterprise. Big SQL can rapidly query data from the widest variety of sources such as RDBMS, HDFS, WebHDFS, object stores, and NoSQL databases. As a hybrid ANSI-compliant SQL engine, Big SQL is highly performant when running queries on unstructured streaming data. Finally, Big SQL is compatible with the entire suite of Db2 products, in addition to the IBM Integrated Analytics System.
Db2 Event Store
Db2 Event Store is a data management system optimized for storing and analyzing high-speed, high-volume, streaming data. Use-cases for Db2 Event Store include Internet of Things (IoT) networks, financial services systems, telecommunications networks, industrial systems, and online retail business systems. The solution offers high-speed analytics and data capture features that allow you to save and analyze up to 250 billion event records daily using only three server nodes. Db2 Event Store integrates IBM Watson Studio technology to support artificial intelligence and machine learning analyses. The solution was also built on Spark, so it works with Spark SQL, Spark Machine Learning, and other compatible tools. Finally, Db2 Event Store supports Go, ODBC, JDBC, Python, and other languages.
ChartMogul's End Points
ChartMogul Plans
Gather data about your subscription plans - like the subscription IDs, names, billing intervals, and the number of intervals that are charged at once - to evaluate the performance of each plan. This will help you better understand the effectiveness of your plans so that you can determine which ones are more or less successful as a whole.
ChartMogul Customers
Create, retrieve, or update data for new or imported customers in ChartMogul. This allows you to see important customer contact details, customer IDs, and valuable performance data including a customer’s MRR, ARR, and industry sector. You can then use that data to better segment your customers, which can provide more accurate and specific information about your business performance.
ChartMogul Invoices
Import invoice data for customers that you are tracking through ChartMogul, including customer IDs, dates of purchase, transactions, and any relevant line items. Then, use ChartMogul to create subscription data for those customers and use that data to track more specific revenue data, both in ChartMogul and in your other data sources.
ChartMogul Transactions
Track payments or refunds made on an invoice to see the transaction ID, type of transaction, transaction date, and whether or not the transaction was successful. This can help you get more accurate analytics from your invoice data. It can also indicate when there is an unusually high number of refunds, which could signal a problem worth addressing.
ChartMogul Subscriptions
Get a list of subscriptions that ChartMogul has automatically generated from invoice data. This endpoint returns several IDs - including subscription IDs, customer IDs, plan IDs, and data source IDs - that will help you to more easily track and integrate data between any of those parameters to create deeper, more accurate business analytics.
ChartMogul Tags
Use tags to track terms that are associated with a customer so that you can segment or monitor them more specifically. For example, you could tag a particular customer as “high priority,” “returning” or anything else that is relevant to your business, and then retrieve a list of customers who have been tagged with those attributes in order to analyze them as a segment.
ChartMogul Custom Attributes
Update customer data with ChartMogul custom attributes that are more specific to the needs of your company. This can include both tags as well as more complex custom attributes. Then, track those attributes in ChartMogul to get analytics that are focused on your particular business concerns.