About Vertica Analytics Platform
Extract, transform, and load data to Vertica. Ingest data from Vertica and load to other destinations.
About Mixpanel
Mixpanel gathers product usage data, including metrics like what features are being used most frequently, the number of active users, and when user engagement rises or drops. It also automatically collects data on all user actions and uses that data to provide a variety of useful insights, such as automatic suggestions for how to improve customer retention and lead acquisition. Since usage data is collected from the start, Mixpanel can also track newly defined metrics using historical data.
Popular Use Cases
Bring all your Mixpanel data to Amazon Redshift
Load your Mixpanel data to Google BigQuery
ETL all your Mixpanel data to Snowflake
Move your Mixpanel data to MySQL
Vertica Analytics Platform's End Points
Vertica Massively Parallel Processing (MPP)
Through its MPP architecture, Vertica distributes requests across different nodes. This brings the benefit of virtually unlimited linear scalability.
Vertica Column-Oriented Storage
Veritica's column-oriented storage architecture provides faster query performance when managing access to sequential records. This advantage also has the adverse effect of slowing down normal transactional queries like updates, deletes, and single record retrieval.
Vertica Workload Management Automation
With its workload management features, Vertica allows you to automate server recovery, data replication, storage optimization, and query performance tuning.
Vertica Machine Learning Capabilities
Vertica includes a number of machine learning features in-database. These include 'categorization, fitting, and prediction,' which bypasses down-sampling and data movement for faster processing speed. There are also algorithms for logistic regression, linear regression, Naive Bayes classification, k-means clustering, vector machine regression/classification, random forest decision trees, and more.
Vertica In-Built Analytics Features
Through its SQL-based interface, Vertica provides developers with a number of in-built data analytics features such as event-based windowing/sessionization, time-series gap filling, event series joins, pattern matching, geospatial analysis, and statistical computation.
Vertica SQL-Based Interface
Vertica's SQL based interface makes the platform easy to use for the widest range of developers.
Vertica Shared-Nothing Architecture
Vertica's shared-nothing architecture is a strategy that lowers system contention among shared resources. This offers the benefit of slowly lowering system performance when there is a hardware failure.
Vertica High Compression Features
Vertica batches updates to the main store. It also saves columns of homogenous data types in the same place. This helps Vertica achieve high compression for greater processing speeds.
Vertica Kafka and Spark Integrations
Vertica features native integrations for a variety of large-volume data tools. For example, Vertica includes a native integration for Apache Spark, which is a general-purpose distributed data processing engine. It also includes an integration for Apache Kafka, which is a messaging system for large-volume stream processing, metrics collection/monitoring, website activity tracking, log aggregation, data ingestion, and real-time analytics.
Vertica Cloud Platform Compatibility
Vertica runs on a variety of cloud-based platforms including Google Cloud Platform, Microsoft Azure, Amazon Elastic Compute Cloud, and on-premises. It can also run natively using Hadoop Nodes.
Vertica Programming Interface Compatibility
Vertica is compatible with the most popular programming interfaces such as OLEDB, ADO.NET, ODBC, and JDBC.
Vertica Third-Party Tool Compatibility
A large number of data visualization, business intelligence, and ETL (extract, transform, load) tools offer integrations for Vertica Analytics Platform. For example, Integrate.io's ETL-as-a-service tool offers a native integration to connect with Vertica.
Mixpanel's End Points
Mixpanel Events
Get any or all raw event data that has been collected by Mixpanel, including what events have occurred, when they happened, and any relevant properties about those events. Then, integrate this raw data with other data sources to get new or deeper usage analytics.
Mixpanel Funnels
Retrieve data about a customer’s journeys through your funnel. This data contains the customer’s timeline from start to finish - including how many steps in the funnel the customer completed during that time - which can be used to identify which steps during a funnel most commonly include specific events, such as losing a customer.
Mixpanel Segmentation
Gather event data that is filtered into segments by an array of properties, such as date range, country, and specific search terms. Then, use that filtered Mixpanel data to get deeper, more detailed analytics into your product performance.
Mixpanel People Analytics
Track customer engagement data, including a customer’s name and email address, as well as the date and time they last accessed your product. This allows you to run predictive analytics, which can show when engagement will likely drop or increase based on historical engagement data.
Mixpanel Retention
Get retention data for a specific cohort of customers by tracking signups and other relevant events during a specified date range. Then, you can feed that Mixpanel data into your analytics to provide a more comprehensive view of your retention trends over time.